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Anisotropic Diffusion in ZPPR Lattices

ELY M. GELBARD

Applied Physics Division
Argonne National Laboratory
Argonne, Illinois 60439

ABSTRACT

Diffusion coefficients are computed for a typical ZPPR
lattice cell using the methods of Benoist and Bonalumi. It is
noted that the diffusion coefficients, Dx, for leakage normal
to the plates, as defined by Benoist and by Bonalumi, are both
double-valued. The spread between Benoist's x-diffusion coef-
ficients is, in the ZPPR cell, half as large as the difference
between Dx and Dy. Bonalumi's x-diffusion coefficients are
much farther apart, the interval between them being considera-
bly larger than the difference between Dx and Dy. Neither the
Bencist nor the Bonalumi method yields homogenized diffusion
coefficients which preserve fluxes, reaction rates, or eigen-
values. A modified definition of homogenized diffusion coef-
ficients is proposed for one-group problems. The modified
parameters are defined so as to guarantee that eigenvalues are
preserved in the homogenization process. It is felt that
generalization to the multigroup case will not be difficult.
The relation between the new diffusion coefficients and the

Benoist coefficients is discussed.
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I. INTRODUCTION

In published work on the analysis of ZPPR critical experiments]
anisotropic diffusion has, so far, been neglected. Such an approach seems
reasonable in a first approximation since, at the high energies where most
leakage occurs, the ZPPR fuel plates are optically thin. Recent Argonne
calculations indicate, however, that in the range from 1-10 MeV, the dif-
fusion coefficients parallel to and perpendicular to the plate surfaces
may differ by as much as 4%, and that in some ZPPR assemblies this dif-

2 Thus, while anisotropic

ference will induce an 0.8% change in Kegg
diffusion effects in ZPPR criticals are normally not very large, neither
are they negligible.

A great many methods are available for the treatment of anisotropic
diffusion in heterogeneous assemblies. It is not our intention here, how-
ever, to survey all these methods or to elaborate the intricate relations
between them. Instead we focus our attention on only two, namely, Benoist's
method3 and the more recently developed method of Bona]umi.4

Benoist's method is well-known and has been widely used, apparently
with great success. Nevertheless important questions about the accuracy
and range of validity of this method remain, and seem to require further
attention. One finds, for example, that there is in the literature no
detailed analysis of the accuracy of the Benoist method in slab cells like
those of the ZPPR lattice. It may be argued that, if Benoist's method is
adequate for the treatment of thermal reactor lattices, it must surely be
adequate in ZPPR lattices where the fuel is relatively thin and hetero-

geneity effects are relatively small. But, precisely because the fuel

plates are thin, the flux in and near the plates is highly anisotropic5
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whereas Benoist's method is based on the approximation that it is Zso-
tropic. It seems proper, then, to question the validity of this as well
as other Benoist approximations before relying on the Benoist method for
the analysis of ZPPR critical assemblies.

A more fundamental question is raised by Bona'lumi,4 who objects to
Benoist's definition of effective diffusion coefficients, and proposes
another. Benoist's and Bonalumi's methods do not differ radically from
each other, and they share with other methods some seemingly universal
features. Apparently all methods discussed in the literature on aniso-
tropic diffusion assume, first, that in the lattice an overall buckling,
B, is superimposed on a periodic flux; secondly, that the leakage asso-
ciated with this buckling can be expanded in a Taylor series in the com-
ponents of B; and, finally, that the buckling is small enough so that
only leading terms in such a series need be retained. But the methods
of Benoist and Bonalumi, despite these similarities, yield diffusion
coefficients which, in a typical ZPPR lattice, are substantially dif-
ferent from each other. Clearly, then, one is called upon to establish
a rationale for choosing between these methods before either is used for
the analysis of ZPPR critical assemblies.

It should be noted that both the Benoist and Bonalumi definitions
give us double-valued diffusion coefficients, though this point seems to
have been overlooked in the literature. We shall see that the spread
between the permissable values of D normal to the plates is rather large
if we accept Bonalumi's definition. If instead, we accept Benoist's
definition, this spread becomes considerably smaller.

Both the Bonalumi and Benoist definitions of D seem somewhat arbi-

trary. We shall show that, in a nonmultiplying medium, neither yields
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fluxes and absorption rates which match those in the original hetero-
geneous lattice, and neither gives the right eigenvalue when fission is
present. Thus, there seems to be room for still another definition and,

in closing, we propose a definition which, in one energy group, does give
the right eigenvalue. It seems 1ikely that this definition can be reformu-

lated easily for multi-energy problems, though this has not yet been done.

II. THE METHODS OF BENOIST AND BONALUMI IN SLAB LATTICES

We begin by deriving Benoist's and Bonalumi's equations specialized
to slab lattices. Of course, derivations for general geometries already
exist in the literature. It is our purpose, in rederiving these equa-
tions, to develop our notation and to exhibit all implied approximations
as clearly as possible.

In one energy, with isotropic scattering, the transport equation

takes the form

2 - WF(r,a) + £, F(r.e) = (1/4n)z_(D)e(r) + (1/4n)s(r) . (1)
We assume that, in the slab lattice,6

S(r) = a(x) cos (B -r) = R{q(x) e™®'L}, (2)
where q(x) has the periodicity of the lattice. Correspondingly,

F(rie) = R{f(x,a) e!E'Z} | (3)
and

olr) = R{x(x) elB'E} , (4)






where, again, f and x have the periodicity of the lattice. Note that
f and x are generally complex. Inserting Eqs. (2), (3), and (4) into

Eq. (1), we find that

B - 9F,8) + [2,00 + 1@ - D) = (/A)z 00 + (1/4m)a(x) -(5)

Let
R(x,2) = R{F(x,2)}, 1(x,2) = I{f(x,2)} , (6)
o(x) = R{x(x)}, w(x) = I{x(x)} . (7)

Then, from Eqs. (5) and (6),

2« WR(x,2) + 1 R(x,8) = (1/4n)z(x)o(x) + (1/4n)q(x)

+ (2« B)I(x,2) , (8)

@ - vI(x,0) + £,1(x,0) = (1/4n)z (x)u(x) - (2 - BR(x:0) . (9)

Now we expand R and I in Taylor series in the two variables Bx and By:

©

Z BBTR ™™ (x,0) (10)

R(x,2) =
n,m=0

I(X.f’i) = Z B:B;I(n'm)(x,fz) " (1])
n,m=0

(0,0)

It can easily be shown that I = 0, and that the leading terms in

Eqs. (10) and (11) satisfy the equations:

(0,0 L .
VI eSS ztR(o’o) = —EI da R0 4+ L q(x) » (12)
X 47 4r
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(0,1) % .
Vi ikl ztx(o'l) = —sf do 10-1) _ QyR(O'O) , (see Ref. 7) (13)

X 4n

(1,0) I 5
ey L0 —S-fdﬂ 103 gf0) (14)
IX & 4
where
u = (2x .

From Eqs. (3), (6), and (7) we see that, to first order in B,

F([;é) R0 cos (B+r)-1I,sin(B+r), (15)

Il = B I(l,o) +B I(O)l) . (]6)
x b

The current, J, is, by definition, given by the expression

f{) do E!(O’O) cos (B - r)-1I,sin (B - g)]

J

cos (B-r)+J,sin(B-r), (17)

-ffzdéll.

Let X, and Xa be, respectively, the left- and right-hand cell boundaries.

ch.

where

i fédé R(0:0)

s

Since we are dealing with a lattice consisting of infinite slabs, we may
define the upper and lower horizontal boundaries arbitrarily. In any

case the net leakage, L, out of the cell is given by the expression

L=J’ vV -dJddv. (18)
cell
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Now we note, first, that R(O’O) satisfies reflecting boundary conditions

at x, and x;. Secondly (since R(0:0) is the flux in the cell when B = 0),
it is clear that J, lies in the x direction, i.e., J, = J; . Therefore,

f Vg E_J_DCOS (_B_'Lﬂ dv =] (a/ax)l:go cos (B-r{l = 0. (19)
cell cell S

Thus,

L=/;ellv-l:ilsin(g-£ﬂdv. (20)

Carrying out the differentiation indicated in Eq. (20), we find that

lSep= cos (B * r)(B.Jd +BJJdV+f sin (B * r)v - J, dV . (21
,[cell T e e cell a _) —l e

From Eqs. (13) and (14) we deduce that

Jio1 G 'I"xl(o’l) @ = 0, (22)

i = -fnyl(l"” d = 0. (23)
Therefore,

P 'BxIQxI(l'O) @ = By (24)

R -Byfny1(°=1) do = TR (25)

Above, in Eqs. (22)-(25) we have made contact with Benoist's notation:
the quantities j1 Kk have precisely the same meaning here as in
Benoist's papers.3 For those not familiar with Benoist's work we point

out that the subscript 2 in the symbol j1 21 indicates that the current
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jl 21 is produced by a source having Qy as a factor [see Eq. (13)]. The

final subscript, 1, indicates that jl 21 is a current in the x direction.
Subscripts in the other quantities j1 Kk have similar meanings.

Since 94 is independent of y
G T (26)

Substituting from Egs. (24), (25), and (26) into Eq. (21), we find that
L= f cos (B * r) [sz + B2j dv
e LA DS S D L T )

+ B f sin (B + r)(3/ax)j; ;, dV . (27)
*Jcell 2

Let ry, be the midpoint of the cell, and assume (as we will in all our
future work) that the cell is symmetric. Expanding L in a Taylor series

in Bx and By, and retaining only leading terms, we find that

- y o o
L cos (B rD).]le11 [§x31,11 + Ble’zé} dv

+ Bx sin (B - [0) (a/ax),jl,11 dv

cell

+ Bi cos (B * rp) (x - xo)(a/ax)jl’11 dv

cell

+ BxBy cos (B * rg) o (y - yo)(a/ax)jl,ll dv . (28)

Since jl 1 is independent of y the last term on the right-hand side of
Eq. (28) vanishes, and since jl 11 is a periodic function of x, the

second term also vanishes. Thus,
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10

¥
L = cos (B * rp) {Bi! j1,11 dv +I (x - xo)(a/ax)lel dv
cell cell

+ Bzf j dvl. (29)
Y ) cel1 G inde

It should be noted that Eq. (29) is an exact expression for the leakage
(in the limit Bx, By + 0) if the series in Bx and By converges.
At this point Benoist asserts that effective diffusion constants

must satisfy the relation

L = [sti + D B;] fceu o(r) dv , (30)
where, as in Eq. (1)

o(r) = fr(;,fz) da . (31)

From Eq. (15) it is clear that

o(r) = cos(B - g)faw"’) da - sin (B - 3)[11 da . (32)

But I,, as defined in Eq. (16), is first order in B. Tﬁerefore, neg-

lecting higher-order terms,

f o(r) dv = cos (B - 30)] deR(O’O) do
cell cell

= cos (B - [D)f ¢ dv , (33)
cell

¢ = fdé R(O’O) -
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i

Thus, to leading terms,

L = (DB2+DB?)cos (B-r r) dv . (34)
(xx yy] (B - rp) CeHM_)

Comparing Eq. (34) with Eq. (29) we conclude that

P = Di = §oooodv +f (x - xo)(3/3%)§, ., dV j 6 dV , (35)
" Hcen trEL cell L cell

D = D, =f j dv/f o dV . (36)

e =i ety " 192 cell

Given that

diieseiF 0, k= # k (37)

from Eqs. (22) and (23), and that

(s/29)3) 5, = 0 (38)

from Eq. (26), one sees that Eqs. (35) and (36) are precisely, Benoist's
equations for D, and D, specialized to a slab ceH.9

Certainly it is possible to solve Eqs. (12), (13), and (14) in their
present form (by discrete ordinate methods, for example) and to compute
diffusion coefficients from Eqs. (35) and (36) directly. In the interests
of efficiency, however, Benoist chooses to develop a computational proce-
dure based on specially designed collision probability techniques. To
facilitate the use of such techniques he introduces various approxima-

tions which we discuss next.
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12

It is easy to show that 10*1), defined implicitly via Eq. (13), is

proportional to Qy. i.e.

I(O,l) a 9h i _R(O,O) 3 (39)

ElAL
th(X,u) B H < Zth

and it follows that the scattering term in Eq. (13) vanishes. We will

assume, in Eqs. (13) and (14), that R(:9) s aimost isotropic, and

replace R(O,O) with the scalar flux, ¢. In this approximation we may write
WAL = g 10D g BB, o g (13')
ax y

Clearly, Eq. (13') can be solved without difficulty through the use of
collision probabilities.

Now suppose that we set out to solve Eq. (14), as well, by collision
probability methods, with R(o’o) replaced by ¢. We see that the "uncollided
flux," Iéiéo), produced by the source u¢, is given by the expression

L B
unc

where, again,

uﬂ"’):;l =0 =g,
DX SeE

If we assume that h is isotropic, as is usual in collision probability
calculations, then 15;50) is proportional to u and the scattering integral
again vanishes. Thus, the uncollided flux is the whole flux and we may

write

L Iho= -0 1@ ~ (0D . h (14")

X
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It turns out that, if the scattering is not isotropic, and u is the mean

cosine of the scattering angle, then

: . uL o 2 .
il s, Lh = —Ltlhd -9, (10 g 70 h

X 4n

but anisotropic scattering is a nonessential complication here and we shall
continue to assume that the scattering is isotropic.

The numerator on the right-hand side of Eq. (35) contains two terms:
the first is the volume integral of j1,11’ a quantity readily computed by
collision probability methods. The computation of the second term is
somewhat more difficult. One finds, however, that the second term is often
small and the neglect of this term is generally considered to be part of
what is called "Benoist's Method". In brief, then, Benoist's approximate

diffusion constants are given by Eqs. (35') and (36'),

i 2 z _ SO S
D1=f J dv/f ¢ dv , j :-[QI’ de , (35')
cell o cell 1,11 2
r P 3 700152 '
by = j dv/f ¢ dv , j ,-J’QI’ do , (36')
J’cell 122 cell 1:4¢ y

with 1100 ang 1D getermined by Eqs. (13') and (14'), respectively.
On retracing the arguments that lead from Eq. (18) to Eq. (35), it

will be seen that, to leading terms in the components of B,

DD = (a/ax)(Jd_] dv BZI o dv . (40)
i . J’cell (x] /x cell

This expression for D_ follows directly from Egs. (18) and (30). Undoubtedly
Eq. (18) is a valid expression for the net leakage from the cell, but it

is not clear how Benoist arrives at Eq. (30). In Benoist's published work
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the relation is postulated without discussion. It is possible that Benoist
considers that Eq. (30) is intuitively obvious: but, on the other hand,
Bonalumi rejects this relation completely. Instead Bonalumi takes, as

his definition of Dx, the expression

Y. JYU o(x,,y| - o(x, ,y|| dy
D, (BON) = IU Jx(xR,y] dyf {8, L [[ - ) (L ]:l . (41)
Yy f
T = Xp = X -

Here Yy and y, are, respectively, the y coordinates of the upper and lower
cell boundaries. It is easy to show that in slab geometry the right-hand
side of Eq. (41) will be independent of the values chosen for these coor-

dinates. After trivial manipulation we find that

D_(BON) = jl,“[xB]/¢[xB} : (42)

where Xg is the x coordinate of either cell boundary.]0 In Eq. (42) we have

used the notation Dx(BON) to make a sharp distinction between Bonalumi's

Dx and the diffusion coefficients derived from Benoist's postulate, Eq. (30).
As was apparently first pointed out by Bona]umi,4 Eq. (35), the equa-

tion defining Benoist's "exact" diffusion coefficient D,, can be cast into

a form quite similar to that of Eq. (42). After integrating oyer y in

Eq. (35), then integrating by parts over x, we find that

8.2 ‘jl,ll(xB)/acell ’

AT f(R 8(x) dx/T . (43)
St

"
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It will be seen that Eqs. (42) and (43) are identical except that in
Eq. (42) the denominator is the cell-edge flux while in Eq. (43) it is the
average flux. For this reason Bonalumi refers to his diffusion constant
as "cell-edge normalized".

Perhaps it is fair to say that both Eqs. (40) and (41) seem perfectly
plausible as definitions of the x diffusion coefficient. In arguing for
the use of Eq. (41) in place of Eq. (40), Bonalumi asserts that the cell-

1 hite

edge normalized Dx (BON) satisfies Selengut's equivalence relation
Benoist's D; does not, but this assertion is stated without proof. The
relation between Benoist's and Bonalumi's x diffusion coefficient will be

discussed further in later sections.

ITI. DOUBLE VALUE OF D,

In Eqs. (42) and (43) various fluxes and currents are evaluated at
the cell boundary. But in a symmetric cell there are two different sets
of symmetry planes and correspondingly, two sets of cell boundaries (see
Fig. 1). Thus there are two possible values of D;, and of Dx (BON). It
is easy to show that this ambiguity in the x diffusion coefficient is not
simply due to a weakness in the definition but is inherent, in a sense,
in the underlying physics. Suppose that z(x) is the cross section for
some arbitrarily chosen reaction in the lattice. Then the average reaction

rate, A(xq,B2), within the cell is given by the expression

K(xq,B2) = F dx Z(X)jdé F(x,2)/T , (45)
T

A(xq,B2) = (1/T)J’(R dx Z(x)[%os [Bxx]R(x,é) - sin [Bxx]l(x,éi] da . (46)
S

15
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Here we have arbitrarily set y, = 0; note that A(x,,B?) is a function of

Xo in the sense that it is the average reaction rate in a cell whose center
is at xo. Equation (46) is obtained by substituting from Eqs. (3) and (4)
into Eq. (45). Now assume, for the sake of simplicity, that By = 0. One
can then show from Eqs. (8) and (9) that y(x) = s o I(x,u) is antisymmetric

in x about xo. It follows that, to order B2,

cos (B x,)

A(xq,B?) = ————;————- Jmk dx z(x)p(x)
“L

vl 32"xR dx (x - xg)22(x)w(x)
2 ®

- B"XR dx (x = xg)Z(x)o(x)} . (47)
45

Note that, since y(x) is of order B, the last term in brackets is actually

of order B2, so that we may write

cos (B xq)
A(xy,B2) = ——— U-‘“ dx z(x)o(x) - ¢ B'{I . (48)
L &

Here, of course,

1"

p(x) = fdé R(x,u) » p(x) = fd{? LG (49)

and

clll= ;—fﬁ‘ dx(x - xq)2z(x)o(x) +fo dx (x - xo)z(x)u(x) .  (50)
oL 255
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Since £ and p have the periodicity of the lattice, the integral in Eq.
(48) is uniquely defined. On the other hand, it is clear from Eq. (50)
that ¢ can have either of two possible values, one for each of the two
possible definitions of the unit cell.

Thus, the reaction rate (regarded as a function of xq) has a cosine
distribution over the lattice but there are two possible values one can
assign to the amplitude of the cosine. Accordingly there will be two
sets of "equivalent" homogenized cross sections which give reaction rates
that match the cell-averaged reaction rates in the lattice. If the reac-
tion rates and fluxes in the equivalent homogenized medium are to be cor-
rect at B2 = 0, and if the effective cross sections are to be independent
of buckling, then we must take

- xR

T =f £(x)o(x) dx/T (51)

T
to be the homogenized reaction cross section. The two possible values
of ¢ then determine two diffusion constants, both equally acceptable.

When, as is customary, we neglect the second term in the numerator
Eq. (35), then the diffusion coefficient is uniquely defined by Eq. (35').
It follows that, when such an approximation is valid, the difference be-
tween the two possible values of D, must be small. If, to the contrary,
this second term is not negligible the spread between possible D, values
may be significant. Usually j1,11 will be positive for all x, and in such

cases 61 will lie between these two possible values.
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IV. NUMERICAL RESULTS

We propose, in this section: (1) to investigate the accuracy, in a
typical ZPPR lattice, of the various approximations which are usually con-
sidered to be part of "Benoist's Method"; (2) to examine the differences
in numerical values of D, computed via cell-edge and cell-averaged normali-
zation; and finally, to determine how large an uncertainty is introduced

into Dx by the ambiguity in the definition of cell boundaries.

A. Diffusion Parallel to Plates

It turns out that cell-edge and cell-average normalization give the
same expression for Dy, so that there is, in this case, no difference be-
tween the definitions proposed by Benoist and Bonalumi. Both lead us to

Eq. (36). After carrying out the y integration in Eq. (36) we get

Dy = /X“ j1,22 dx/fﬁ ¢ dx . (52)
* i

Since Dy depends solely on integrals over the cell, and not on point
values, it makes no difference which of the two alternative sets of sym-
metry planes we choose as cell boundaries: both choices give the same

Dy. On the other hand, there is, of course, a difference between Dy and

DS
5 12
In a series of numerical experiments we have used the ANISN code

to compute the functions h and h. This can be done, of course, in many
ways, but we find it convenient to adopt the following procedure:

(1) We treat Eqs. (12) and (39) as the Group 1 and Group 2 equations,
respectively, of a two-group set, with xizz = -(22 + 1)/2. Here zizz is
the ¢'th Legendre component of the scattering cross section from Group 1

into Group 2.
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(2) Equations (12) and (13') form another two-group set, but in this

1+2
case I
s0

be determined from Eqs. (36) and (36') respectively.

= -(1/2), Zizz =0,%>0. Withh and h known, D, and 52 can

Coefficients D, and 62, for diffusion parallel to the plates, have
been computed in this way for a typical ZPPR cell configuration. The cell
geometry is sketched in Fig. 1, and all relevant problem parameters appear
in Table I. Cross sections in this table are spectrum weighted over the
range from 1 to 10 MeV but it is felt that details of the origin of these
cross sections are not important here. We are interested only in an esti-
mate of the accuracy of Benoist's diffusion coefficient rather than the
exact value of this coefficient in some particular lattice.

To compute Dy we have solved Egs. (12) and (39) in various Sn approxi-
mations characterized, in Table II, as DP;-P;, DP,-Pq, and DP5-P;;. Here
the designation DP5-P;, refers to an Sn approximation with

(1) 12 double-Gauss quadrature weights and ordinates, appropriate

to a double-P5 approximation; and

(2) delta-function scattering from Group 1 into Group 2, repre-

sented in a P,; approximation.
The other designations have corresponding interpretations. In the compu-
tation of 62, Eqs. (12) and (13') were again solved in DP5, DP,, and DPg
approximations, but with anisotropic scattering from Group 1 into Group 2
suppressed, as indicated in the lower rows of Table II. It is very clear
from Table II that Benoist's method, which yields 62 instead of D,, is
extremely accurate in this case despite the strong anisotropy of the

angular flux.

19
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B. Diffusion Normal to Plates

Making use of the knowledge that 1(0,1)

is proportional to Qy, it

is possible, as we have seen, to compute this quantity by solving Eq. (39)
on standard Sn codes. Similarly standard Sn codes can be used to solve
Eq. (13') for h which, then, gives us both 100D gng 110 1pe compu-
tation of 1¢1°%) s s1ightly more difficult.

109 ¢ determined by Eq. (14), which differs from

The quantity
the usual neutron transport equation in two respects. First, the coupling
term, uR(o‘o) cannot be developed in a Legendre polynomial expansion of

the required form, i.e.,

©

1
uR(o’o) 7 Z [“22 - ]J EszRio'O)Pl(”)
2=0 2

for any set of numbers xs Secondly, one can show that

"

1(1’0)(x,u) = -I(l'o)(x.-u) s SR T e (53)

Equation (53) defines a boundary condition ("antisymmetry condition")
which is not available in standard Sn codes. On the other hand, it is not
difficult to write a two-group Sn code which permits the imposition of
"antisymmetric" boundary conditions and, in addition, includes the term
uR(O'O) as a source into the second group. Such a code has been written,
and used to solve Egs. (12) and (14).

Essentially three different approximations are involved in the pro-
cess which takesus from D; to 61. First, one neglects the second term
in the numerator of Eq. (35): second, one replaces the source term
uR(o’o) with the source term u¢: finally, the scattering term in

Eq. (14) is deleted. Since the angular flux in the test problem
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configuration is highly anisotropic, it is interesting to ask how much
error is introduced into the effective diffusion coefficient by the second
step alone.

Suppose that, in Eq. (14), we replace uR(o'O) by u¢ without making

any other changes. Define a function T(l’o) such that

1(1,0) - z s
w2y 10 - s g [0 (14")
X 4n

5111=fszdnl(1°),

D f hn /f‘“ ¢ dx , (35")

E1 /XR j1 11 dx/fXR ¢ dx . (35"")
-~ oL

We see that the difference between D; and 51 reflects only the effect of
R(0,0) 13

Let

and

o
—
n

while

"

anisotropy in
Values of 51 and 5,, computed in various Sn approximations, are

listed in Table III. It will be seen that the anisotropy in the source

term has no appreciable influence on the integral of the effective cur-

It seems remarkable that this should be true, in view of
R(0.0)

rent 31,11.

the fact that the flux, , 1s so strongly anisotropic.

21
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In Table IV we list values of Dx computed according to various
prescriptions. Diffusion coefficients which appear in the first row of
numbers are computed from the Benoist definitions: D?[XB] and D?{xB] are
"exact" Benoist diffusion coefficients, defined in Eq. (43), while 61 is
the "approximate" Benoist diffusion coefficient defined via Eq. (35').
It is this last diffusion coefficient which one would refer to, customarily,
as the diffusion coefficient given by Benoist's method. We see that
D?[XB) and D?[xB] differ by about 2%. On the other hand, since D, % 2.88
(see Table II), 51 and 62 differ by about 4%. Thus, the magnitude of the
anisotropic effect is uncertain by 50%.

If, in Eq. (14) we simply replace the coupling term, uR(O’O), by the

2(1,0) in place of

approximate coupling term u¢, as in Eq. (14"), we get
11,00, Suppose that we use the currents 31,11(XB)'t° define diffusion
coefficients in place of the "exact" current jl,ll(xB). Diffusion coeffi-
cients so defined are listed in the second row of numbers in Table IV. As
one might expect, the anisotropy of the flux has a much greater effect on
the value of jl’11 at individual points than it has on the volume integral
of jl,ll’ In fact the use of the scalar flux instead of the angular flux
cuts in half the spread between the two permissible diffusion coefficients.
It turns out that the scalar flux, ¢, varies much more over the test
problem configuration, than does the effective current jl,ll' As a result
the two cell-edge normalized diffusion coefficients, which appear in the
last row of Table IV, are much farther apart than the corresponding coef-
ficients as defined by Benoist. Moreover, they are much farther apart
than the Benoist x and y diffusion coefficients, 61 and 62. Thus, the
spread between permissible values of the Bonalumi x diffusion coefficient

totally obscures any anisotropic diffusion effect in the ZPPR lattice.
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V. CRITERIA FOR THE VALIDITY OF THE HOMOGENIZATION PROCESS

We see that there are substantial differences between the x diffu-
sion coefficients as defined by Benoist and Bonalumi. Certainly we are
left in an awkward position if we accept Bonalumi's definition, since the
spread in permissible x diffusion coefficients is, then, so large. It
does not follow, however, that Bonalumi's definition is wrong, or that
Benoist's definition is right. In fact we have, at this point, adopted
no criterion by which to judge either definition.

It is true that Selengut's equivalence princip1e11 leads unambiguously
to a definition of effective diffusion coefficients in certain circumstances.
Selengut assumes, in Ref. 11, that diffusion theory is valid and that the
absorption cross section vanishes. The direct application of Selengut's
principle under more general conditions is not an entirely straightforward

extension of his work and we prefer, here, to explore other approaches.

A. Assessment of the Performance of Homogenized Diffusion Coefficients

Consider, again, the one-energy transport equation, Eq. (1), and
assume for simplicity that By = 0. Given a lattice cell with boundaries

at X and Xgs define

aﬁm = P “’HET(") dx/T . (54)
T

Here ¢HET(X) is the scalar flux in the heterogeneous assembly and T = Xp = X

It is clear that

fr = U[5, B2 (55)

where
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6 fo q(x) cos (Bx) dx/T , (56)

_a = fo ¢(x)2a(x) d/fo o(x) dx , (57)
L 1,

f" (a/3%) 3, d>/f‘“ 3(x) dx . (58)
1t 3

It will be seen, on comparison with Eq. (40), that D, is precisely the x

™
|

D,

diffusion coefficient as defined by Benoist, but it should be noted that

6 and fa are functions of the buckling. To order B?

Q = Q@ +q®8%, @ - Gecos(Bxy) , @ qu(x) dx/T 5 (59)
X

and

I, - x§°> + z;Z)BZ k z;O) - f(“ #(x)z,(x) dx/fk o(x) dx . (60)
ST 5

Thus we may write
"Q(o) i Q(2)Bz'l
) = .
HET =
RIS
a a

In the homogenized assembly one generally takes, as the effective absorp-

(61)

tion cross section, the quantity

AT fo ST (x) dx fo ki
HOM ﬁ xL

= g (62)

a

while the source density is given by the expression
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Q q cos (Bx) . (63)

HOM

Expanding in powers of B and averaging over the cell we find that

Qoy = 09 - (1724)8272§ cos (Bx,) ,

Q@ _ (1/24)12829@ . (64)

Thus, given a homogenized x diffusion coefficient Dx,

_ [o@ - (1/24)12820 ]

b (65)
HOM
o]
a X
1f 4 = Q2 - (1/24) 120, then
i E(O) + Q@p2 - Bza
HOM ’ (66)
o]
_a X
so that, to order B?,
i E)(O) # 0(2)32:]
o = (67)

HOM ’:;0) . E)x - Z:O)(A/Q(O)H

From Egs. (61) and (67) it is clear that B and & will be different

unless

D= D + Za(lz) B z20)(13/0(0)] : (68)

We see that if the effective absorption cross section and the source
are defined as in Eqs. (62) and (63) respectively, then both the Bonalumi

and Benoist prescriptions will yield incorrect average fluxes within the
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boundaries of each cell. Further, even if we were to use Eq. (68) to
define an effective diffusion coefficient (again double-valued), the
absorption rate, AR, in the cell would be given, to order BZ?, by the

expression

= (0) (2)2]=
AR {za +1.°'8 ]¢HOMT : (69)

and

)=
AR # za ¢HOMT :

We do not mean to suggest, at this point, that a prescription involving
a buckling-dependent absorption cross section would actually be practical.
Rather it is our intention to point out that the defects in present
homogenization schemes will not be easy to remedy.

When Bx =0, By # 0, we again find, by similar arguments, that the
Benoist method gives an incorrect average flux in the interval which cor-

responds to the extent of any cell. In this case, however, it turns out,

03

when one uses Benoist's D, as the diffusion coefficient, that za HOM(50)

is the correct average absorption rate in the cell centered at r;. Again
we recall that the Benoist and Bonalumi Dy are the same.

It seems important to be aware of these deficiencies in the Bonalumi
and Benoist methods, deficiencies which we have noted in the Bonalumi and
Benoist treatments of the inhomogeneous transport equation. But it is not
necessarily true that one should go so far as to redefine diffusion coeffi-
cients with the inhogeneous transport equation specifically in mind. In
fact it may be better, at this point, to turn our attention from inhomo-

genous to eigenvalue problems.
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B Reformulation of Definition of Effective Diffusion Coefficients

In our notation the one-group transport equation with fission and

isotropic scattering takes the form

u(aR/ax) + ztR

(2/47)0 + () [ozg/an)o + (2 - B)I, (70)

w(a1/0x) + 5.1 = (zg/4n)u + (1/3)(vig/dn)v - (@ - BR, ()

¢ = fR dé (72)
fx o . (73)

Suppose we consider the term (6 + B)I in Eq. (70) as a perturbation,

where

and

=
1

defining "unperturbed" eigenvalue equations as follows:

waR/ax) + 1R = (z/80)0 + (1/no) [vig/dn)e (74)

w(al/ox) + g 1 = (z /4n)v + (1/xo)(uzf/4n]¢ - (2 - BR . (75)

It will be seen that each unperturbed eigenvalue, ), is actually degenerate

with eigenvectors

(76)

|<
e
]
(I - ]
-
| <<
N
]
——
[ =)
——

The unperturbed adjoint equations appear below:
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n

-u(aR*/3x) + 1 R* {zs/an]$* + (1/;0)[@{/4"]5* - (2« B)I* ,(77)

-u(al*/ax) + zti* {25/41‘),1,* + (1/;\0)[\,%/4")&* ; (78)

Again, for each A, there are two eigenvectors which we may write as

follows:
: lﬁ(-u)] : -1(-0) (79)
Vinee= > * = . : 79
; 0 = R(-u)
Let
0 -(a-B)
AH = .
0 0
It is easy to see that
<ng> IR S o (80)
<!I(AH)!:|> =, AE. (81)

Here

(w) = [déf‘“ U(x,2)V(x,2) dx .
%

Further one can show that

<!T(AH)_V_1> - <y_;(AH)!2> .
<!‘{(vzf1]!}> = <13[vzf1}@,



i




where I is the identity operator. Therefore it follows from degenerate
perturbation theory that there is only one perturbed eigenvalue, given by

the expression

(/) = (1/x) +<!§(AH)L>/<!;{\££I)L> - (82)

More explicitly

(1/2) = (1/2) -fdQ[xR R(-u)(2 - B)I(2) dx/F . (83)
i

Here
= 2
F = F (\)Zf]¢ dx .
e
Define I_and I_ such that
x y
u(aix/ax] + Ztix = (Is/lhr]i: + (1/)\0)(\125/471]& = quk » (84)
u(ly/ay] + ztIy = - QyByR , (85)

v .j. de Ix

It can easily be shown that Eqs. (84) and (85) do have solutions, des-

mn

pite the fact that (1/)o) is an eigenvalue of the corresponding homo-

geneous equations. Further 1= fx & fy and, finally,
-faéf‘“ R(-u)(a « B)I(a) dx = B2t +B2r , (86)
L

where

L fdnf u)I p) dx/F ,

- [d& fo nyk(-u)iy({z) dx/F .

~
"
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From Eqs. (83) amd (86) it follows that

(1/x) = (1/xg) + B2t + Biry . (87)

X = Uz‘ém/fém i (88)
where

i f“ (vz)o(x) dx/f #(x) dx , (e2)
=0 . fozMx // (90)

Therefore we may write Eq. (87) in the form

/) = [520)/‘59)] 1 + EEéO)/ESJ)J (Txei + Tye;]} .

Now

o) = (0) =—=(0) ==(0) ==(0)

= Za + [)Zf :Ipri + [\sz :|1yB)2' vIig " . (91)

It will be seen from Eq. (91) that, if we take £ and Eéo) as the "equiva-
=],

lent homogenized" D and VIgs respectively, then |vE p _] plays the role of

Dx, while [\)E(o)]ry plays the role of Dy. We are led, then, to define

: e 1 5
M s E fdnfx“ WR(-u)I(n) dX}f‘a [vEe)o(x) dX/F (v2eje?(x) dx » (92)
J x )
oL JJ% -
- | da [ R ar(-w)I. (2) deX“ vz )e(x) dx/fR vI)e2(x) dx .(93)
-] 6 R sty o ] [ g o0/ (g

Suppose that, in Eq. (82), we approximate the importance function,

pM

Vi, by its average over space and solid angle. We find, in this approxima-
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X

ee

X =

fR ‘jl,ll dx fR ¢(x) dx , (94)
oL, L

[x“ o) dx/f“ 3(x) dx . (95)
* S0

Further, if we now compute 31 1 and 51 22 by Benoist's collision proba-

and,

e

b
y

bility methods, Dix) and D;:) become, identically, Benoist's bl and D,.
Thus there is a close connection between Benoist's diffusion coefficients
and the diffusion coefficients required to preserve the eigenvalue during
homogenization. Perhaps this close connection gives us a justification
of some sort for the use of Benoist's method: at the moment we see no
similar justification for the use of Bonalumi's method.

We digress here to note that the effective diffusion coefficients
defined in Eqs. (92) and (94) differ from those derived earlier by
bh"lh'ams.]4 On comparing Eq. (77) in Ref. 14 with our Eq. (40), one finds
that Williams' x diffusion coefficient, ﬁx, is identical with the Benoist
D,. Williams apparently concludes that the diffusion coefficient 5x (or

©) ang 7@
a £

D;), used in conjunction with I , reproduces the hetero-
geneous lattice eigenvalue. Yet it would seem that this cannot be true,
simply because D, is double-valued if for no other reason.

It is difficult to compare Williams' work, in detail, with our own
since the mathematical techniques used here and in Ref. 14 are, formally,
quite different. We believe, however, that the discrepancies between our
results and those reported by Williams can be traced back to a fundamental
assumption embodied in Eq. (3) of Ref. 14. Williams postulates that

k = ka, where P is the nonleakage probability. We have argued, above,

eff
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that keff and k differ, not only because of the direct effect of leakage,
but also because (to order B?) the leakage modifies the effective absorp-
tion and fission cross sections. We see no treatment of such indirect
effects in Williams' derivation.

Diffusion coefficients defined by Eqs. (92) and (93) have not yet been
computed for our ZPPR test problem configuration. It is possible, however,
to make a rough estimate of the ratios between these coefficients, on the
one hand, and Benoist's on the other. We have already seen that approxi-
mations based on the assumption that R is isotropic tend to be very accu-
rate. It has also been noted earlier that j1,11 is nearly constant over
the ZPPR cell and, in fact, we observe that j1,22 is also nearly constant.
If it is assumed that R is isotropic, and that both j1,11 and j1,22 are

constant, we find that

AR R (11)s <1></fo vz, )62 dx b dxfT
e sm A X forgas/ P (e anf
[D;”/sz . (96)

In order to make an estimate of the value of the integrals on the right-

o2

ee

hand side of Eq. (96), we assume, further, that @ is approximately equal
to the scalar flux, ¢, computed earlier, in our fixed-source test prob-
lem. It will be recalled that, in this fixed source problem, the source
in each region was taken to be equal to vIg in that region. It seems not
unreasonable, therefore, to assume that ¢ and & have roughly the same
shape. At any rate if we make this assumption we come to the conclusion

that
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E)i”/bﬂ v LD;”/ISZJ v 0.964 (97)

i.e. that Benoist's D's are too small, in this case, by about three to
four percent.

We believe that Eqs. (92) and (93) can be generalized straightfor-
wardly to the multigroup case, at least in situations where the group-to-
group scattering is taken to be isotropic. Generalized versions of these
equations could be used to test Benoist's method, or to correct Benoist's
diffusion coefficients when corrections are deemed necessary. It should
be stressed, at this point, that the proposed new definitions of Dx and Dy
are contrived for one purpose alone: they are designed to reproduce, in
the homogenized lattice, the eigenvalue of the heterogeneous lattice. The
eigenvalue in the homogenized lattice will be correct to order B2 if the
new diffusion coefficients are used in conjunction with the buckling-
independent one-group parameters defined in Eqs. (89) and (90). On the
other hand, edited reaction rates (for any given power level) will not
be correct to order B? unless the reaction cross sections are huckling
dependent; and, unfortunately it is not clear that the use of buckling-
dependent reaction cross sections would actually be feasible in the
analysis of real reactors. Thus the new prescription for the computation
of diffusion coefficients shares some of the weaknesses of older
prescriptions.

How important these weaknesses are, from a practical point of view,
we cannot say. Further it should be pointed out that very little is known,
at this time, about the performance of any homogenization scheme near inter-

faces. In view of the difficulty of a more thorough theoretical analysis



R
: i
3 4 s

-3

¥

Al

fin e
¢

gRi

Fed )t St 2 MY o8N8 2ed zandney el SUEIAOAE  wi

* 1 o betetod st BTdome STV il Sesne

Fanand dpusvoly o 8 e v fpakitae Sty Yo me Ry
> _' Al

hasr ermae a8 feo 1ER) e EB) L i su0s AV EERE AR S

s
sl e b3 sl ( taes % | seRoqueiniifun o6 0 LGN
a5t [arsal oo iTeal of RENSE 21 pa et iSs R GENat

"
G118 harlam 2 poffed $xad. ol bepy ad) ENOS, ~’I"¢C_Hlﬂ@i'-”"

11 By b ZharT et Thety 3 nalalirans oot SRR

£ Intog 2 tHETS e e R SRR,
i 3
o1 bet O T by SEoQUUG 5o iat B L':’.'(!f"'l:} ’1’”
mpgratad st Yo sulaidenrs el GurEsl basinsbouion sad
« ’ . EX

i cdgsrann =l TETw, 82 bo s pnazoniiesrts, i a«umww?pl )

it tw ol JEIaD - Dged 595 P s YTaGn . DT EITIRE PN
i b g = n
15 {28 3ol Bad el ayaragahag qioin-snd TRabosastnbats
s vig ¢AE F6% ) L ESIAN NN TINESN AT T DR S TR
1 & ¢ e art % ) {
Z 2 Eh 200 TVIRR cPl
&5 3t a2 5 { | 2301 [
A3 ¢ un |
Vi ( i ke —20 s ST e

+ BTGNS

1 s il
eponon. (a5 100 sofenie 1 ae tedl dupds (el 2ot

. o {
H
PO Y i
: ' TN
ro gt B SRR




it seems clear that, ultimately, only detailed Monte Carlo calculations can
give us the information we need for definitive tests of our and other

homogenization procedures.

VII. CONCLUSIONS

In the particular version of the ZPPR which we have studied here
the probability of leakage out of the core is, approximately, 30%, and
the leakage probabilities in the x, y, and z directions are roughly equal.
Further the Benoist x diffusion coefficient, 61, turns out to be almost
equal to the diffusion coefficient, D, computed from the flux-weighted
transport cross section. On the other hand, the y and z Benoist diffu-
sion coefficients, 62 and 63, are greater than D by about 4%. It follows
that when we use the Benoist method, taking 61, 62, and 63 (in place of D)
for the x, y, and z diffusion coefficients, we lower the eigenvalue, keff'
by about 0.8%. If, now, we assume that D, is uncertain by 2%, an amount
corresponding to the spread between the two permissible values of D;, we
conclude that keff is uncertain by roughly 0.2%. Such an uncertainty is
not particularly significant, and is fairly small compared to the 0.8%
change in keff caused, in toto (according to Benoist's method), by aniso-
tropic diffusion. In contrast the 11% spread in Bonalumi's x diffusion
coefficient gives rise to a 1% uncertainty in eigenvalue, an uncertainty
which is significant, and is no smaller than the whole anisotropy effect.
Moreover Bonalumi's definition of effective diffusion coefficients seems
as appealing, intuitively, as Benoist's.

Since intuition does not seem to lead us to one unique definition of

D,, we have found it necessary to formulate a precise objective of some
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sort for the homogenization process. The objective we have chosen is
quite simple. We wish to construct buckling independent group parameters
such that the homogeneous eigenvalue (i.e. the eigenvalue in the homoge-
nized lattice) will be equal to the heterogeneous eigenvalue to order BZ.
Suitable parameters are defined, for one-group problems, in Section V.
It seems clear that corresponding multigroup parameters can be obtained
by straightforward generalization of the methods of Section V if the P,
transfer matrix is diagonal.

The diffusion coefficients defined in Section V are ratios of inte-
grals whose integrands contain importance functions. If we approximate

these importance functions by their average values we find that our Dik)

and Dix) become identically the same as Benoist's 61 and 62. respectively.

This close connection between D and the diffusion coefficients required
to preserve keff seems to provide some measure of justification for the
use of Benoist's method.

It is interesting to note, however, that if one advocates the use
of Benoist's method on such grounds one cannot, any longer, consider the

term

ADy = fo (x - XO)(ajl,n/ax] dx fo ¢ dx

N s 3
as a correction to 61. The quantity 61 will generally lie somewhere
within the interval bounded by the two values of D;. By adding aD; to 61
one moves the x diffusion coefficient, from some point inside this inter-
val, to a new point close to one of its boundaries. But it is difficult
to see why either boundary value, DI{XBJ’ should be any more correct than

D;-
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If we take Dix) and D;A) to be the "true" homogenized diffusion coef-
ficients there does not seem to be any simple expression for the errors
in 61 and 62. In Section V we have tried to estimate the magnitude of
these errors in our test problem and have concluded that 6] and 62 are
too large by about 3.4%. Such errors in Benoist's D's would produce a
1% error in keff in the reactor configuration under consideration here.
Now, our test problem is a one-group problem with group parameters cover-
ing the range from 1 to 10 MeV. In a multigroup adjoint computation the
group in question would contain "slowing-down" sources coupling it to
groups of lower energies. Because of the absence of such fictitious
slowing-down sources in the one-group adjoint equations it is possible
that the one-group and multigroup importance functions will be quite dif-
ferent in shape. Therefore one cannot assume that our estimate of the
errors in Benoist's D's will be very accurate. Nevertheless our results
do seem to indicate that these errors may be significant and should be
examined further.

Many weaknesses in the treatment of anisotropic diffusion remain.
The group parameters which enter into eigenvalue calculations would,
according to our proposal, be buckling independent. But if we are to
compute reaction rates which are correct to order B? the cross sections
used to compute these reaction rates cannot be buckling independent. We
see no way to circumvent this difficulty. Further the quantities

D(X) contains,

D(X)B;® and D;A)B;@ are not simply leakage rates since
X

implicitly, contributions due to the buckling dependence of vZf and za.
It is possible that the use of such a diffusion coefficient is not appro-

priate near interfaces. On the other hand, there seems to be no good
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theoretical foundation for any homogenization prescription near inter-
faces. Clearly, then, we cannot claim to have solved all the problems
involved in the computation of homogenized group constants. Yet, despite
all the remaining difficulties, it still seems important to require that
a homogenization procedure should preserve the heterogeneous eigenvalue,
in an infinite lattice, to order BZ.

In closing we note that much of what has been said here is obviously
relevant in other geometries, as well as in slab geometry. Clearly our
arguments about eigenvalues and reaction rates are equally valid in any
periodic lattice. Perhaps it is not quite so obvious that the Benoist
and Bonalumi diffusion coefficients are generally double-valued in square
and hexagonal cells, just as they are in slab cells. Yet this is true.
Consider, for example, an array of rods in a square or hexagonal lattice.
It is customary (and convenient) to define a unit cell with the rod at
its center: but it is also possible to define a cell with a rod at each
corner of its boundary. Corresponding to each of these two possible
definitions of the unit cell we would get two values of the exact Benoist

diffusion coefficient, and two values of the Bonalumi coefficients.
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TABLE I

Test Problem Parameters

(Left- and right-hand boundaries are symmetry planes.
Source density has been set equal to vZ

in each region.)

5
Region I Region II ‘ Region III
(Uranium Oxide) | (Sodium) (Uranium-Plutonium) ;
Thickness (cm) 1.0 1525 0.25 E
Source Density 0.00998 0 0.185
. 0.181551 0.0452915 0.252648 !
b 0.117890 0.0267661 0.0860426 i
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TABLE II

Parallel Diffusion Coefficients
in a Typical ZPPR Lattice

DP 5P, DP,,-Pq DP<-Py,
D, (cm) 2.8705 2.8740 2.8768
DP5-P, DP,-P, DP5-P,

D, (cm) 2.8613 2.8707 2.8798

D, is computed from Eqs. (12), (36), and (39).

62 is the Benoist approximate D,, computed from
Eqs. (12), (13'), and (36').
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TABLE 111

Diffusion Coefficients Normal to Plates

DP3-P7 DP,-Pq DP<-Pq,

D, 2.759 2.765 2.769
DP3-Py DP,-Pg DP5-Pg

5, 2.772 2.7 2.77 jl

D, is computed from Egs. (14) and (35"'):

anisotropic source term

uR(O’O).

D, is computed from Eqs. (14") and (35"):
isotropic source term u¢.






TABLE IV

Coefficients for Diffusion Normal
to Plates, According to Benoist's
and Bonalumi's Prescriptions

D, from Benoist's Definitions

(x5 0% (g o
DPs DPs DPg
257115 2o 2.17677
i [rs) D [ra)
DPs DPs

source = u¢ source = u¢
2.7754 2.7460

D, from Bonalumi's Definition

A | o
DPs DPs
2.9182 2.4378
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Fig. 1. ZPPR test problem configurations, showing two sets of "cell boundaries".

Plates of Types I, II, and III alternates in an infinite lattice.
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